Monday, 16 May 2011

The $1000 genome

My Dad has high blood pressure and my Mum had to receive treated breast cancer but what does this say about my future health? It is possible I have a predisposition to both these conditions but I may also never develop either. The difference comes down to what combination of genes I have inherited and for me to know for sure, my genome would have to be mapped.

The U.S. Department of Energy Human Genome Project Information Web site estimates it would take "about 9.5 years to read out loud (without stopping) the more than three billion pairs of bases in one person's genome sequence"[*]. It therefore unlikely to surprise you that the mapping of your personal genome does not come cheaply. Currently, you're looking at around $50,000 - $100,000 which only seems affordable in light of the fact the first genome to be mapped in 2003 cost $3,000,000,000.

Now, however, a new technique for gene mapping is being developed that could bring the cost down to under $1000. This would allow personal genomics to become available for predictive medicine. As our Origins' colloquium speaker, Professor David Deamer from the University of California Santa Cruz, suggested, you could imagine having your own genome stored on a thumb drive to take with you when you visited your doctor.

Professor Deamer first conceived the idea for the $1000 genome over twenty years ago. He postulated that if it were possible to create a hole in a biological cell that was sufficiently narrow that only a single strand of DNA could pass through it, then the DNA components ("nucleotides") could be analysed and recorded as they were dragged through. Combined, this pattern of DNA components make up your genes[**]. The question was what could be used to create such a tiny channel?

The answer to this did not emerge until ten years later and turned out to be a toxin called alpha-hemolysin. As its description suggests, hemolysin is not normally remotely desirable and is released during staph infections where it burrows into red blood cells and makes them explode (not good). In this case, however, its burrowing ability is exactly what Professor Deamer's team were looking for.

Alpha-hemolysin adheres to a cell's surface and makes a hole through the cell's structure known as a 'nano pore'. When a small voltage is applied, charged particles pass through the cell to create a tiny, but measurable, electric current. When a DNA strand attempts to pass through the hole, it can only just fit. This means it temporarily blocks the channel while it is squeezing through, causing the electric current to drop. The amount the current falls by turns out to be determined by which nucleotide is currently in the way. By measuring the change in current, the genome can be mapped.

The familiar picture of DNA is not of a single strand, but of the double helix. Tied up in this manner, the DNA cannot fit through the nano pore. Instead, it enters the broader, top part of the channel and get struck. From this position, it becomes unzipped until it can finally pass through the hole and out of the cell. The very exact size of the hole is important, since to record the genome accurately, only one nucleotide at a time must exit the cell.

Genome mapping using this technique is not yet available, but Oxford Nanopore Technologies have plans to produce a commercial device using this process. That being the case, there is only really one question left:

Are you ready to know what you really are?

--
[*] In case anyone is really curious, this figure is calculated by assuming a reading rate of 10 bases per second, equaling 600 bases/minute, 36,000 bases/hour, 864,000 bases/day, 315,360,000 bases/year. So there.

[**] Nucleotides make up DNA strands and stretches of DNA strands make up genes (in case anyone else was confused about the order of the extremely small).

Monday, 2 May 2011

Networks in the brain

So your friend Ben is married to Margaret who is friends with Rachel who shares an office with Rory who worked on a planetarium show with Rob who once received a detention at school for mooning Prince Harry [*]. 

According to the theory of the six degrees of separation, you are no more than half a dozen people away from receiving that front row invite to the Royal Wedding. The idea is that you are connected to every other person on Earth through an average of six people. It is a concept huge social network sites such as Facebook have been testing, but surprisingly it is an arrangement that is reflected in the structure of your brain.

All this I learned at the Royal Canadian Institute (RCI) 2011 Gala. The RCI was formed in 1849 by Sir Sandford Fleming. One of its original roles was to publish a scientific research journal in Canada but now its emphasise is on a weekly public lecture series which covers a wide range of scientific topics. In addition, the RCI helps with grants for students wishing to study science at university and it hosts an annual Gala dinner. The Gala is an opportunity to have a discussion over a great meal with a scientist. One of the twenty five tables at this year's event was hosted by my adviser, Professor Ralph Pudritz, but I shunned his table in favour for one led by a scientist working on the structure of the brain; a topic I knew nothing about. (When I told Ralph I'd rejected his table in favour of another he assured me he 'expected nothing less'. I don't think he meant this to be a reflection of my attention in our research group meetings.)

Our table was led by Professor Mark Daley who worked on models of the brain at the University of Western Ontario. When newly arrived at his institute, Mark explained that he had known very few people.

"But, I did know Mike." He gestured towards one of the other diners seated with us. "And Mike knew everybody. So if I needed to contact somebody elsewhere in the University, I could go to Mike and the chances were he knew them. This meant although I only knew a few people, I was connected to almost everyone else via only one person."

This, Mark explained, was the premise behind the six degrees of separation. There are a few people who know a huge number of others and these individuals act like hubs. People preferentially attach themselves to hubs (since the hub is likely to meet them through their enormous list of contacts) resulting in them being connected to a great many others through a very small number of steps.

What Mark said about Mike turned out to be entirely true. When chatting to him before dinner he had declared, "Oh, you're at McMaster! Do you know Hugh Couchman and James Wadsley?" I had to confess I did.

Mark continued by explaining that the brain organises its neurons along similar principals. There are hub areas in the brain which have a huge number of neurons connected to them and these link up regions which have sparsely few connections.

This structure can be explored with two major methods. The first is to take thin slices of the brain's grey matter and the second (more desirous for live volunteers) is to watch water flows via an MRI scan.

The consequences of this neural structure have important ramifications both for the effect of brain-damage and in understanding mental illnesses. Damage to one of these hub region, for instance, can result in the head injury being fatal because the brain simply cannot rewire to compensate from such a large loss of connections. Other times, the damage can be severe but limited to one specific area. Mark cited an example of a woman with damage to one hub who was left unable to see.

In most people, the number of hub regions is small and they are found is quite specific areas. One exception to this is in the case of people suffering from schizophrenia, where many smaller hub nodes are seen and in farther flung areas in the brain than for a healthy person. 

A question I asked was whether this was the underlying concept in electric shock treatment for depression? Was the idea to try and forcibly rewire the neurons by destroying their electrical signals and thereby forcing the brain to choose another (hopefully better) structure? Mark said that while this was the correct premise, such treatments were now strongly out of favour. He compared it with chemotherapy, saying you effectively killed a lot of neurons in the hope that you destroyed the bad pathways before you took out all the good. He did describe less invasive treatments which included asking the patient to think of something pleasurable directly after thinking of a traumatic event. Over time, the association can force the brain to rewire and help with post-traumatic stress disorder.

So what is is that governs our thoughts? Is the brain, as Penrose claims in 'The Emperor's New Mind', a system governed by random probabilities via quantum mechanics? Or are we, as Mark assumes in his work, simple Turing machines whose thoughts and actions can be completely predicted based on our experiences? Neither sounded particularly appealing.

"I want another option," I told Mark. He nodded and promised me one after he'd finished his dinner. The problem with being the guest speaker at a meal was the actual food was hard to fit in amidst the barrage of questions.

The third option, he explained as the plates were cleared, was that our mind is like a Bayesian machine which using a mixture of probabilities and input from its surroundings to make decisions. So when faced with the delectable crumble for desert, there was a very high chance that I would take the logical choice and eat it. Then there was the small probability I'd lob it across the table. I love feeling I have choice.

The crumble was rhubarb, in case anyone was wondering.

At the end of the dinner, each table was allowed to pose a question to another group to allow diners the chance to hear about the different areas being discussed that evening. The most important question was posed first and was directed at Professor Jeffrey Rosenthal from the department of statistics at the University of Toronto:

"What is the probability that Kate Middleton will wear a slinky wedding dress?"

"Slinky?" Jeffrey rose to answer the question. "This isn't as close to my area of expertise as you were led to believe!"


--
[*] Editor's note: any resemblance to real people, in the Physics and Astronomy Department or otherwise, is purely coincidental and Rob has never yet admitted to knowing Prince Harry. Or mooning.